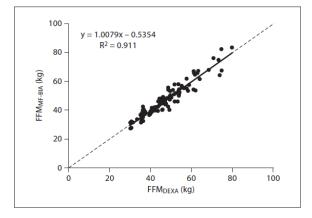
BIOSPACE	Overseas Sales and	Assessment of Body composition in Peritoneal Dialysis	Update: 2012-07-18
	Marketing Dept.		Overseas Sales and Marketing Dept.

Assessment of Body composition in Peritoneal Dialysis patients using Bioelectrical impedance and Dual-Energy X-ray Absorptiometry.

Conclusion:

When compared lean body mass using multi-frequency bioelectrical impedance (InBody720) an dual-energy X-ray absorptiometry(DEXA) in PD patients, the author found out that lean body mass was highly correlate with good method agreement using DEXA as the reference test (r=095) and InBody 720 is useful tool for determining body composition in PD patients.


- 1. Research period: Unknown
- 2. Location of research: Royal Free Hospital, London, UK
- 3. Researcher: A Furstenberg an A Davenport
- What were measured?: Fat free mass, Segmental lean mass from DEXA (Hologic QDR Discovery W model, USA) and Multi-Frequency BIA (InBody720, Biospace, Seoul, Korea)
- 5. Characteristic of patients
 - Table 1. Patient demographics(n=104)

Characteristic	Mean±SD	Range
Age, years	57.1±17	22-86
Height, cm	163.2±11.3	133-185
Weight, kg	67.5±15.8	25.1-111
Body mass index	25.3±4.9	16.2-36.7
Body surface area, m ²	1.9 ± 0.3	1.1-2.5
Vintage of dialysis, years	6.2±8.3	0.1-16.9

6. Results

	DEXA (mean ± SD)	MF-BIA (mean ± SD)
Body weight, kg	69.4 ± 15.0	70.0 ± 15.0
Fat-free mass, kg	47.6 ± 11.0	47.5 ± 11.6
Fat mass, kg	21.8 ± 8.2	22.5 ± 9.4
% body weight	31.0 ± 8.5	31.7 ± 10.3
Total lean body mass, kg	45.5 ± 10.6	44.7 ± 11.0
Lean trunk, kg	24.0 ± 5.5	21.1 ± 4.9
Lean left arm, kg	2.3 ± 0.8	2.5 ± 0.8
Lean right arm, kg	2.6 ± 0.8	2.5 ± 0.8
Lean left leg, kg	6.4 ± 1.8	7.2 ± 2.0
Lean right leg, kg	6.6 ± 1.9	7.2 ± 2.0
Bone mineral content, kg	2.1 ± 0.5	2.8 ± 0.8

Table 2. Patient whole-body and segmental composition measured by DEXA and MF-BIA in 104 stable peritoneal dialysis patients

Fig. 1. Plot of total body FFM by DEXA and by MF-BIA. --- = Identity line, —— = trendline.

Table 5. contraction of body composition measurements best vo. in but				
	r	95%CI	Р	
Fat free mass	0.95	0.93-0.97	< 0.0001	
Fat mass	0.93	0.90-0.96	< 0.0001	
Lean Trunk	0.90	0.86-0.93	< 0.0001	
Lean Left arm	0.86	0.80-0.90	< 0.0001	
Lean right arm	0.84	0.77-0.89	< 0.0001	
Lean left leg	0.89	0.83-0.92	< 0.0001	
Lean right leg	0.90	0.85-0.93	< 0.0001	

Table 3. Correlation of body composition measurements DEXA vs. MF-BIA

Regarding Fat free mass, MF-BIA Lean body mass (or Fat free mass) was highly correlated with good method agreement using DEXA as the reference test (r=0.95, p<0.0001; bias-0.88kg, 95%CI-1.53 to 0.23kg). Similarly, high correlation and good method agreement were found for fat mass (r=0.93, p<0.0001; bias0.69kg, 95% CI 0.03-1.36kg). Segmental analysis of LBM revealed strong correlations between LBM for trunk, left and right arms and legs (r=0.90, 0.84, 0.86, 0.89 and 0.90, respectively, p<0.0001).

7. Consideration

There are significant correlations between DEXA and MF-BIA but there was a minimal bias on segmental lean body composition for the arms and legs. Also, there was variability in lean mass assessment for the legs compared to the arms and a greater variability in the trunk compared to DEXA.

This could have been due to differences in hydration status between the assessments. MF-BIA may potentially be a useful tool for determining nutritional status in PD patients.

Where it was listed

American Journal of Nephrology 2011; 33:150-156 (IF=2.539)

Comments from clinical research team

- Use of different DEXA Model (Hologic)
 - Previous research papers used GE Lunar model for the assessment of body composition analysis and compared it with InBody. However, this research was conducted with Hologic model.
- DEXA measured more fat-free mass in trunk with edema.
 - PD patients often have more body water to filter wastes and water through Peritoneal, and DEXA measured more fat-free mass in trunk with edema. This implies that DEXA may overestimate fat-free mass since DEXA cannot measure edema.

About the author and hospital

The author, Andrew Davenport is a doctor at UCL Centre for Nephrology, Royal Free Hospital, University College London Medical School, London, UK Biospace has been supporting the author and Royal Free Hospital has 3 Inbody720 model.